论文标题

通过迭代预测对大维张量因子模型模型的统计推断

Statistical inference for large-dimensional tensor factor model by iterative projections

论文作者

Barigozzi, Matteo, He, Yong, Li, Lingxiao, Trapani, Lorenzo

论文摘要

张量因子模型(TFM)是高阶大维张量时间序列的吸引力缩小尺寸工具,并且在经济学,金融和医学成像中具有广泛的应用。在本文中,我们提出了基于塔克分解的TFM的投影估计量,并提供了其最小二乘的解释,该解释与对向量因子模型的主要成分分析(PCA)的最小平方解释相关。投影技术同时降低了信号成分的维度和特质组分张量的大小,从而导致信号噪声比的增加。我们得出了负载的投影估计量和公共因子张量的收敛速率,该张力比基于天真的PCA估计器的收敛速度快。我们的结果是在轻度条件下获得的,从而使特质分量较弱地跨和自动相关。我们还基于特征值比原理提供了一种新颖的迭代程序,以确定因子数量。进行了广泛的数值研究,以研究相对于最先进的投影估计量的经验性能。

Tensor Factor Models (TFM) are appealing dimension reduction tools for high-order large-dimensional tensor time series, and have wide applications in economics, finance and medical imaging. In this paper, we propose a projection estimator for the Tucker-decomposition based TFM, and provide its least-square interpretation which parallels to the least-square interpretation of the Principal Component Analysis (PCA) for the vector factor model. The projection technique simultaneously reduces the dimensionality of the signal component and the magnitudes of the idiosyncratic component tensor, thus leading to an increase of the signal-to-noise ratio. We derive a convergence rate of the projection estimator of the loadings and the common factor tensor which are faster than that of the naive PCA-based estimator. Our results are obtained under mild conditions which allow the idiosyncratic components to be weakly cross- and auto- correlated. We also provide a novel iterative procedure based on the eigenvalue-ratio principle to determine the factor numbers. Extensive numerical studies are conducted to investigate the empirical performance of the proposed projection estimators relative to the state-of-the-art ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源