论文标题
低温渐近物用于通过普通和嵌套dyson方程研究的磁化式链链的横向自相关器
Low-temperature asymptotics for transverse autocorrelator of the magnetically polarized Ising chain studied by ordinary and nested Dyson equations
论文作者
论文摘要
提出了两个版本的Plakida-tserkovnikov算法分解,在低温方向上,我们得出了普通的和嵌套的dyson方程,用于磁化式ISING链的横向自相关器。使用它们,我们为自相反器获得了相应的低温渐近渐近肌。 We show that the ordinary Dyson equation results in a correct $o({\rm e}^{-βE_{gap}})$ account of the magnon creation process, while the nested Dyson equation additionally gives the correct $o({\rm e}^{-βE_{gap}})$ contribution associated with transitions from magnons to bound two-magnon states.获得的结果可能对于扩展在两极分化$ xxz $链上的建议方法很有用。
Suggesting two versions for the Plakida-Tserkovnikov algorithm breakdown in the low-temperature regime, we derive ordinary and nested Dyson equations for the transverse autocorrelator of the magnetically polarized Ising chain. Using them we get the corresponding low-temperature asymptotics for the autocorrelator. We show that the ordinary Dyson equation results in a correct $o({\rm e}^{-βE_{gap}})$ account of the magnon creation process, while the nested Dyson equation additionally gives the correct $o({\rm e}^{-βE_{gap}})$ contribution associated with transitions from magnons to bound two-magnon states. The obtained result may be useful for the extension of the suggested approach on the polarized $XXZ$-chain.