论文标题

评估orac给出的多项式的聚类根的加速细分

Accelerated Subdivision for Clustering Roots of Polynomials given by Evaluation Oracles

论文作者

Imbach, Rémi, Pan, Victor Y.

论文摘要

为了寻求设计,分析和实施了一个细分算法,用于寻找由Oracles进行评估的单变量多项式的复杂根,我们提出了子词素,允许对这种多项量的复杂根部聚类的细胞分量进行实质性加速。我们依靠cauchy和近似于固定复合盘中根的功率总和,并且可以在少数评估中计算 - 该程度上的二旋gar素。我们描述了根部排除,根计数,根半径近似和将光盘缩合到其包含的根群的过程,称为$ \ varepsilon $ -compression。为了证明我们的算法的效率,我们将它们结合在原型的根群集算法中。为了计算可以快速评估的多项式根部的簇,我们的实现与用户选择的root查找,mpsolve竞争。

In our quest for the design, the analysis and the implementation of a subdivision algorithm for finding the complex roots of univariate polynomials given by oracles for their evaluation, we present sub-algorithms allowing substantial acceleration of subdivision for complex roots clustering for such polynomials. We rely on Cauchy sums which approximate power sums of the roots in a fixed complex disc and can be computed in a small number of evaluations --polylogarithmic in the degree. We describe root exclusion, root counting, root radius approximation and a procedure for contracting a disc towards the cluster of root it contains, called $\varepsilon$-compression. To demonstrate the efficiency of our algorithms, we combine them in a prototype root clustering algorithm. For computing clusters of roots of polynomials that can be evaluated fast, our implementation competes advantageously with user's choice for root finding, MPsolve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源