论文标题

使用高斯 - 铁矿的有效逼近预期的超量改善

Efficient Approximation of Expected Hypervolume Improvement using Gauss-Hermite Quadrature

论文作者

Rahat, Alma, Chugh, Tinkle, Fieldsend, Jonathan, Allmendinger, Richard, Miettinen, Kaisa

论文摘要

最近,最近提出了许多用于对计算昂贵问题进行多目标优化的方法。通常,每个目标的概率替代物是由初始数据集构建的。然后,替代物可用于在目标空间中为任何解决方案产生预测密度。使用预测密度,我们可以根据解决方案来计算预期的超量改善(EHVI)。最大化EHVI,我们可以找到接下来可能会缴纳的最有希望的解决方案。有用于计算EHVI的封闭式表达式,并在多元预测密度上整合。但是,它们需要分区目标空间,对于三个以上的目标而言,这可能会非常昂贵。此外,对于预测密度取决于的问题,没有封闭形式的表达式,可以捕获目标之间的相关性。在这种情况下,使用蒙特卡洛近似值,这并不便宜。因此,仍然需要开发新的准确但便宜的近似方法。在这里,我们研究了使用高斯 - 亚属正交近似EHVI的替代方法。我们表明,对于独立和相关的预测密度,对于一系列流行的测试问题,它可能是蒙特卡洛的准确替代方案。

Many methods for performing multi-objective optimisation of computationally expensive problems have been proposed recently. Typically, a probabilistic surrogate for each objective is constructed from an initial dataset. The surrogates can then be used to produce predictive densities in the objective space for any solution. Using the predictive densities, we can compute the expected hypervolume improvement (EHVI) due to a solution. Maximising the EHVI, we can locate the most promising solution that may be expensively evaluated next. There are closed-form expressions for computing the EHVI, integrating over the multivariate predictive densities. However, they require partitioning the objective space, which can be prohibitively expensive for more than three objectives. Furthermore, there are no closed-form expressions for a problem where the predictive densities are dependent, capturing the correlations between objectives. Monte Carlo approximation is used instead in such cases, which is not cheap. Hence, the need to develop new accurate but cheaper approximation methods remains. Here we investigate an alternative approach toward approximating the EHVI using Gauss-Hermite quadrature. We show that it can be an accurate alternative to Monte Carlo for both independent and correlated predictive densities with statistically significant rank correlations for a range of popular test problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源