论文标题
受限的动态和定向渗透
Constrained Dynamics and Directed Percolation
论文作者
论文摘要
在最近的一项工作中[A。 Deger等人,物理。莱特牧师。 129,160601(2022)]我们已经表明,动力学约束可以在经典的,确定性的,翻译不变的自旋系统的动力学中完全阻止多体混乱,具有驱动动力学相变的约束强度。使用广泛的数值模拟和缩放分析,我们在这里证明,这种约束诱导的相变为一个和两个空间维度的定向渗透普遍性类别。
In a recent work [A. Deger et al., Phys. Rev. Lett. 129, 160601 (2022)] we have shown that kinetic constraints can completely arrest many-body chaos in the dynamics of a classical, deterministic, translationally-invariant spin system with the strength of the constraint driving a dynamical phase transition. Using extensive numerical simulations and scaling analyses we demonstrate here that this constraint-induced phase transition lies in the directed percolation universality class in both one and two spatial dimensions.