论文标题
通过机器学习分子动力学模拟预测的无定形硅中量子校正的厚度依赖性导电性
Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine-learning molecular dynamics simulations
论文作者
论文摘要
无定形硅(A-SI)是一种重要的热管理材料,也是研究强烈无序材料中热传输的理想游乐场。在广泛的温度和样本量中,A-SI的热导率的理论预测仍然是一个挑战。本文我们通过采用大规模分子动力学(MD)模拟对A-SI的热传输性能进行系统研究,该模拟具有准确有效的机器学习神经进化电位(NEP),该电势(NEP)对在量子机械密度 - 函数功能级别上计算出的大量参考数据进行了培训。 NEP的高效率使我们能够研究有限大小和淬火速率在A-SI形成中的影响。我们发现,它需要一个模拟单元格高达$ 64,000 $的原子(一个线性大小为11 nm的立方单元格),淬灭速率降至$ 10^{11} $ k s $^{ - 1} $,以进行完全收敛的导热率。研究了结构特性,包括以配对相关函数,角度分布函数,配位数,环统计和结构因子为特征的中等范围和中等顺序,以证明NEP的准确性并进一步评估淬火率的作用。使用异质和均质的非平衡MD方法以及相关的光谱分解技术,我们计算了A-SI的温度依赖性和厚度依赖性的导热率值,并表明它们与10 K到室温的可用实验结果很好地一致。我们的结果还强调了量子效应在计算的热导率中的重要性,并基于光谱导热率支持量子校正方法。
Amorphous silicon (a-Si) is an important thermal-management material and also serves as an ideal playground for studying heat transport in strongly disordered materials. Theoretical prediction of the thermal conductivity of a-Si in a wide range of temperatures and sample sizes is still a challenge. Herein we present a systematic investigation of the thermal transport properties of a-Si by employing large-scale molecular dynamics (MD) simulations with an accurate and efficient machine-learned neuroevolution potential (NEP) trained against abundant reference data calculated at the quantum-mechanical density-functional-theory level. The high efficiency of NEP allows us to study the effects of finite size and quenching rate in the formation of a-Si in great detail. We find that it requires a simulation cell up to $64,000$ atoms (a cubic cell with a linear size of 11 nm) and a quenching rate down to $10^{11}$ K s$^{-1}$ for fully convergent thermal conductivity. Structural properties, including short- and medium-range order as characterized by the pair correlation function, angular distribution function, coordination number, ring statistics and structure factor are studied to demonstrate the accuracy of NEP and to further evaluate the role of quenching rate. Using both the heterogeneous and the homogeneous nonequilibrium MD methods and the related spectral decomposition techniques, we calculate the temperature- and thickness-dependent thermal conductivity values of a-Si and show that they agree well with available experimental results from 10 K to room temperature. Our results also highlight the importance of quantum effects in the calculated thermal conductivity and support the quantum correction method based on the spectral thermal conductivity.