论文标题

部分可观测时空混沌系统的无模型预测

A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

论文作者

Castenow, Jannik, Harbig, Jonas, Jung, Daniel, Kling, Peter, Knollmann, Till, der Heide, Friedhelm Meyer auf

论文摘要

我们考虑\ mathbb {r}^d中的$ n $ robots群。机器人忘了,迷失方向(没有共同的坐标系/指南针),并且可见度有限(观察其他机器人达到恒定距离)。基本的编队任务收集要求所有机器人都达到相同而不是预定义的位置。在相关的近乎收集任务中,他们必须达到不同的位置,以使每个机器人都看到整个群。在考虑的设置中,可以在$ \ MATHCAL {O}(N +δ^2)$同步弹组中以两个和三个维度的同步弹性解决,其中$δ$表示两个机器人的初始最大距离。在这项工作中,我们正式化了有效收集协议的关键属性,并使用它来定义$λ$ - 收缩协议。任何此类协议收集$ d $二维空间中的$ n $机器人,$ \ mathcal {o}(δ^2)$同步回合。此外,我们证明了一个相应的下限,表明机器人在其社区的本地凸壳内移动目标点的任何协议($λ$ - 债务协议具有此属性)都需要$ω(δ^2)$ rounds来收集所有机器人。除其他外,我们证明了GTC-Aolococer的$ D $维概括为$λ$ - 收缩。值得注意的是,我们的改进和广泛的运行时绑定与$ n $和$ d $无关。 $ d $的独立性回答了一个开放的研究问题。我们还引入了一种方法,以使任何$λ$ contractions collisionfree collisionfree解决近乎收集。所得协议保持$θ(δ^2)$的运行时,即使在半同步模型中也可以工作。

We consider a swarm of $n$ robots in \mathbb{R}^d. The robots are oblivious, disoriented (no common coordinate system/compass), and have limited visibility (observe other robots up to a constant distance). The basic formation task gathering requires that all robots reach the same, not predefined position. In the related near-gathering task, they must reach distinct positions such that every robot sees the entire swarm. In the considered setting, gathering can be solved in $\mathcal{O}(n + Δ^2)$ synchronous rounds both in two and three dimensions, where $Δ$ denotes the initial maximal distance of two robots. In this work, we formalize a key property of efficient gathering protocols and use it to define $λ$-contracting protocols. Any such protocol gathers $n$ robots in the $d$-dimensional space in $\mathcal{O}(Δ^2)$ synchronous rounds. Moreover, we prove a corresponding lower bound stating that any protocol in which robots move to target points inside of the local convex hulls of their neighborhoods -- $λ$-contracting protocols have this property -- requires $Ω(Δ^2)$ rounds to gather all robots. Among others, we prove that the $d$-dimensional generalization of the GtC-protocol is $λ$-contracting. Remarkably, our improved and generalized runtime bound is independent of $n$ and $d$. The independence of $d$ answers an open research question. We also introduce an approach to make any $λ$-contracting protocol collisionfree to solve near-gathering. The resulting protocols maintain the runtime of $Θ(Δ^2)$ and work even in the semi-synchronous model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源