论文标题
辅助协变量有监督的词典学习
Supervised Dictionary Learning with Auxiliary Covariates
论文作者
论文摘要
监督字典学习(SDL)是一种经典的机器学习方法,同时寻求特征提取和分类任务,不一定是先验的目标。 SDL的目的是学习类歧视性词典,这是一组潜在特征向量,可以很好地解释特征以及观察到的数据的标签。在本文中,我们提供了SDL的系统研究,包括SDL的理论,算法和应用。首先,我们提供了一个新颖的框架,该框架将“提升” SDL作为组合因子空间中的凸问题,并提出了一种低级投影梯度下降算法,该算法将指数成倍收敛于目标的全球最小化器。我们还制定了SDL的生成模型,并根据高参数制度提供真实参数的全局估计保证。其次,被视为一个非凸的约束优化问题,我们为SDL提供了有效的块坐标下降算法,可以保证在$ O(\ varepsilon^{ - 1}(\ varepsilon^{-1}(\ log logepsilon^varepsilon^{\ varepsilon^{ - 1}} = 2})中,该$ \ varepsilon $ - 定位点(\ varepsilon^{ - 1})对于相应的生成模型,我们为受约束和正则化的最大似然估计问题建立了一种新型的非反应局部一致性结果,这可能是独立的。第三,我们通过监督主题建模和从胸部X射线图像进行肺炎检测来应用SDL进行不平衡的文档分类。我们还提供了模拟研究,以证明当最佳的重建性和最佳判别词典之间存在差异时,SDL变得更加有效。
Supervised dictionary learning (SDL) is a classical machine learning method that simultaneously seeks feature extraction and classification tasks, which are not necessarily a priori aligned objectives. The goal of SDL is to learn a class-discriminative dictionary, which is a set of latent feature vectors that can well-explain both the features as well as labels of observed data. In this paper, we provide a systematic study of SDL, including the theory, algorithm, and applications of SDL. First, we provide a novel framework that `lifts' SDL as a convex problem in a combined factor space and propose a low-rank projected gradient descent algorithm that converges exponentially to the global minimizer of the objective. We also formulate generative models of SDL and provide global estimation guarantees of the true parameters depending on the hyperparameter regime. Second, viewed as a nonconvex constrained optimization problem, we provided an efficient block coordinate descent algorithm for SDL that is guaranteed to find an $\varepsilon$-stationary point of the objective in $O(\varepsilon^{-1}(\log \varepsilon^{-1})^{2})$ iterations. For the corresponding generative model, we establish a novel non-asymptotic local consistency result for constrained and regularized maximum likelihood estimation problems, which may be of independent interest. Third, we apply SDL for imbalanced document classification by supervised topic modeling and also for pneumonia detection from chest X-ray images. We also provide simulation studies to demonstrate that SDL becomes more effective when there is a discrepancy between the best reconstructive and the best discriminative dictionaries.