论文标题

使用推出和Max-sat解决定时窗口的电容车辆路由问题

Solving the capacitated vehicle routing problem with timing windows using rollouts and MAX-SAT

论文作者

Khadilkar, Harshad

论文摘要

车辆路由问题是文献中众所周知的NP-HARD组合优化问题。传统的解决方案方法涉及精心设计的启发式方法或耗时的元启发术。强化学习的最新工作一直是一种有希望的替代方法,但发现在解决方案质量方面很难与传统方法竞争。本文提出了一种混合方法,结合了加强学习,政策推广和可满足性的解决方案,以实现计算时间和解决方案质量之间的可调整权衡。在流行的公共数据集中的结果表明,该算法能够比现有基于学习的方法更接近最佳水平,并且计算时间较短。该方法需要最少的设计工作,并且能够在没有额外培训的情况下解决看不见的任意规模问题。此外,该方法可以推广到其他组合优化问题。

The vehicle routing problem is a well known class of NP-hard combinatorial optimisation problems in literature. Traditional solution methods involve either carefully designed heuristics, or time-consuming metaheuristics. Recent work in reinforcement learning has been a promising alternative approach, but has found it difficult to compete with traditional methods in terms of solution quality. This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability solver to enable a tunable tradeoff between computation times and solution quality. Results on a popular public data set show that the algorithm is able to produce solutions closer to optimal levels than existing learning based approaches, and with shorter computation times than meta-heuristics. The approach requires minimal design effort and is able to solve unseen problems of arbitrary scale without additional training. Furthermore, the methodology is generalisable to other combinatorial optimisation problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源