论文标题

迈向具有理性曲线的Feynman参数积分的分析结构

Towards Analytic Structure of Feynman Parameter Integrals with Rational Curves

论文作者

Gong, Jianyu, Yuan, Ellis Ye

论文摘要

我们提出了一种研究Feynman参数积分的分析结构的策略,在该策略中,集成剂的奇异性由合理的不可约组成。该策略的核心是鉴定从积分中引起的选定的不连续性层,以及用于计算主纸上其奇异性的几何方法。对于产生多个多种聚合物的积分,我们期望此策略中收集的数据足以构建其符号。我们通过Aomoto Polyogarithms激发了这种分析,并进一步检查了其有效性,并使用具有四循环集成奇点的示例(一环Feynman积分属于)来说明技术细节。最后对高环积分进行了评论。

We propose a strategy to study the analytic structure of Feynman parameter integrals where singularities of the integrand consist of rational irreducible components. At the core of this strategy is the identification of a selected stratum of discontinuities induced from the integral, together with a geometric method for computing their singularities on the principal sheet. For integrals that yield multiple polylogarithms we expect the data collected in this strategy to be sufficient for the construction of their symbols. We motivate this analysis by the Aomoto polylogarithms, and further check its validity and illustrate technical details using examples with quadric integrand singularities (which the one-loop Feynman integrals belong to). Generalizations to higher-loop integrals are commented at the end.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源