论文标题
阳性特征中西格尔品种的阳性,成分和双曲线
Positivity, plethysm and hyperbolicity of Siegel varieties in positive characteristic
论文作者
论文摘要
我们研究了特征性$ p $的偏光abelian品种(也称为Siegel模块化品种)的模量空间的双曲性特性。我们的方法将Schur Foundor的PlethySM操作用作关键成分,并且需要针对特征$ P $的向量捆绑包的新阳性概念,称为$(φ,d)$ - 增强性。概括以Hodge Line捆绑包而闻名的内容,我们还表明,Siegel模块化品种上的许多自动形态矢量束为$(φ,d)$ - 丰富。
We study hyperbolicity properties of the moduli space of polarized abelian varieties (also known as the Siegel modular variety) in characteristic $p$. Our method uses the plethysm operation for Schur functors as a key ingredient and requires a new positivity notion for vector bundles in characteristic $p$ called $(φ,D)$-ampleness. Generalizing what was known for the Hodge line bundle, we also show that many automorphic vector bundles on the Siegel modular variety are $(φ,D)$-ample.