论文标题
杂种DE特性解决方案
Heterotic de-Sitter Solutions
论文作者
论文摘要
我们将所有扭曲的产品de-sitter背景分类为异性超级,最多两个循环。我们发现带有$ n \ ge 3 $的Warped $ ds_n $背景是$ \ mathbb {r}^{1,n} \ times m_ {9-n} $,其中$ m_ {9-n-n} $是$(9-n)$ - 尺寸 - 尺寸 - 尺寸riemannian riemannian。此外,我们确定扭曲的$ ds_2 $背景是$ ads_3 \ times m_7 $,其中$ m_7 $是7维的Riemannian歧管。
We classify all warped product de-Sitter backgrounds in heterotic supergravity, up to two loops. We find that warped $dS_n$ backgrounds, with $n\ge 3$, are $\mathbb{R}^{1,n}\times M_{9-n}$, where $M_{9-n}$ is a $(9-n)$-dimensional Riemannian manifold. Moreover, we establish that warped $dS_2$ backgrounds are $AdS_3\times M_7$, where $M_7$ is a 7-dimensional Riemannian manifold.