论文标题
通过扩展的肿瘤在周围的超弹性培养基上引起的压缩应力的两相模型
Two-phase model of compressive stress induced on a surrounding hyperelastic medium by an expanding tumour
论文作者
论文摘要
\ emph {Inter}实验,其中将肿瘤细胞接种在凝胶状培养基或水凝胶中,显示肿瘤细胞和它们嵌入的组织之间的机械相互作用以及局部含有外部硫化的,可扩散的,可扩散性的营养剂的局部水平(例如,牛根)的生长动力学。在本文中,我们提出了一个数学模型,描述了这些\ emph {intter}实验。我们使用该模型来了解肿瘤生长如何在水凝胶中产生机械变形,以及这些变形又如何影响肿瘤的生长。水凝胶被视为非线性超弹性材料,肿瘤被建模为两相混合物,包括粘性肿瘤细胞相和各向同性,无关的间质液相。使用数值和分析技术的组合,我们展示了肿瘤的生长动力学如何随着水凝胶的机械性能而变化。当水凝胶柔软时,营养物的可用性主导了动力学:肿瘤会演变为较大的平衡构型,其中肿瘤边界上富含营养的细胞的增殖速率平衡了中央中心养分型细胞的死亡率。随着水凝胶刚度的增加,机械耐药性会增加,肿瘤的平衡大小也会下降。确实,对于嵌入刚性水凝胶中的小肿瘤,肿瘤细胞所经历的抑制力可能太大,以至于消除了肿瘤。该模型的分析确定了水凝胶的存在驱动肿瘤消除的参数状态。
\emph{In vitro} experiments in which tumour cells are seeded in a gelatinous medium, or hydrogel, show how mechanical interactions between tumour cells and the tissue in which they are embedded, together with local levels of an externally-supplied, diffusible nutrient (e.g., oxygen), affect the tumour's growth dynamics. In this article, we present a mathematical model that describes these \emph{in vitro} experiments. We use the model to understand how tumour growth generates mechanical deformations in the hydrogel and how these deformations in turn influence the tumour's growth. The hydrogel is viewed as a nonlinear hyperelastic material and the tumour is modelled as a two-phase mixture, comprising a viscous tumour cell phase and an isotropic, inviscid interstitial fluid phase. Using a combination of numerical and analytical techniques, we show how the tumour's growth dynamics change as the mechanical properties of the hydrogel vary. When the hydrogel is soft, nutrient availability dominates the dynamics: the tumour evolves to a large equilibrium configuration where the proliferation rate of nutrient-rich cells on the tumour boundary balances the death rate of nutrient-starved cells in the central, necrotic core. As the hydrogel stiffness increases, mechanical resistance to growth increases and the tumour's equilibrium size decreases. Indeed, for small tumours embedded in stiff hydrogels, the inhibitory force experienced by the tumour cells may be so large that the tumour is eliminated. Analysis of the model identifies parameter regimes in which the presence of the hydrogel drives tumour elimination.