论文标题
磁化的修饰重力施瓦茨柴尔德时空中的混乱
Chaos in a Magnetized Modified Gravity Schwarzschild Spacetime
论文作者
论文摘要
基于标量探向矢量修饰的重力理论,现有文献中给出了修改的重力Schwarzschild黑洞解决方案。通过包含修改的重力耦合参数获得这种黑洞时空,该参数对应于修饰的重力常数和黑洞电荷。从这个意义上讲,修饰的重力参数不仅充当增强的重力效应,而且是重力排斥力对在黑洞周围移动的测试粒子的贡献。由于修改的Schwarzschild时空是静态球形对称性的,因此是可集成的。但是,当黑洞浸入外部渐近均匀磁场并为粒子带电时,球形对称性和集成性被破坏。尽管磁化的修改后的Schwarzschild时空是不可整合且不可分割的,但是当将其Hamiltonian分为五个明确集成的部分时,它允许应用显式符号积分器。以提议的明确集成剂以及庞加利部分的技术和快速的Lyapunov指标作为数值工具,我们表明,带电的粒子在某些情况下可以进行混乱的动作。通过从全球相空间结构中增加的重力参数增加,加强了混乱。当磁场参数和颗粒能增加时,结果也有相似的结果。但是,粒子角动量的增加会削弱混乱的强度。
Based on the scalar-tensor-vector modified gravitational theory, a modified gravity Schwarzschild black hole solution has been given in the existing literature. Such a black hole spacetime is obtained through the inclusion of a modified gravity coupling parameter, which corresponds to the modified gravitational constant and the black hole charge. In this sense, the modified gravity parameter acts as not only an enhanced gravitational effect but also a gravitational repulsive force contribution to a test particle moving around the black hole. Because the modified Schwarzschild spacetime is static spherical symmetric, it is integrable. However, the spherical symmetry and the integrability are destroyed when the black hole is immersed in an external asymptotic uniform magnetic field and the particle is charged. Although the magnetized modified Schwarzschild spacetime is nonintegrable and inseparable, it allows for the application of explicit symplectic integrators when its Hamiltonian is split into five explicitly integrable parts. Taking one of the proposed explicit symplectic integrators and the techniques of Poincare sections and fast Lyapunov indicators as numerical tools, we show that the charged particle can do chaotic motions under some circumstances. Chaos is strengthened with an increase of the modified gravity parameter from the global phase space structures. There are similar results when the magnetic field parameter and the particle energy increase. However, an increase of the particle angular momentum weakens the strength of chaos.