论文标题
部分可观测时空混沌系统的无模型预测
Toward matter dynamics in spin foam quantum gravity
论文作者
论文摘要
任何纯量子重力的方法最终都必须面对与理论耦合量子问题的问题。过去,已经提出了几种将耦合物质与旋转泡沫量子重力耦合的方式,但是耦合物质重力系统的动力学探索挑战。为了迈出探索量子物质对自旋泡沫模型的影响的第一步,我们将自由的,庞大的标量晶格理论与受限制的半古典4D自旋泡沫模型(称为量子cuboids)融为一体。该模型可以理解为近距离叶片(以及不规则)晶格的叠加。这两种理论都是通过定义不规则晶格上的标量晶格场理论通过离散的外观演算结合的,然后通过求和旋转泡沫构型来叠加这些理论。我们使用马尔可夫链蒙特卡洛技术计算几何和物质可观察物的期望值。从可观察的物品中,我们在参数空间中确定了一个策略,其中自旋泡沫具有有限的总体积,并且平均看起来像常规晶格,其紧急晶格间距取决于标量场的质量。我们还测量了与自旋泡沫中编码的地球距离相关的标量场的2点相关函数和相关长度。我们的结果与在固定的常规晶格上定义的普通标量晶格场理论的相关函数是一致的,该固定晶格具有新兴的晶格间距和相同的质量。我们得出的结论是,在模型的这种状态下,标量场对自旋泡沫的波动不敏感,并且有效地行为,就好像它在固定的常规晶格上定义一样。
Any approach to pure quantum gravity must eventually face the question of coupling quantum matter to the theory. In the past, several ways of coupling matter to spin foam quantum gravity have been proposed, but the dynamics of the coupled matter-gravity system is challenging to explore. To take first steps towards uncovering the influence quantum matter has on spin foam models, we couple free, massive scalar lattice field theory to a restricted, semi-classical 4d spin foam model, called quantum cuboids. This model can be understood as a superposition of hypercuboidal (and thus irregular) lattices. Both theories are coupled by defining scalar lattice field theory on irregular lattices via discrete exterior calculus and then superimposing these theories by summing over spin foam configurations. We compute expectation values of geometric and matter observables using Markov Chain Monte Carlo techniques. From the observables, we identify a regime in parameter space, in which the spin foam possesses a finite total volume and looks on average like a regular lattice with an emergent lattice spacing dependent on the mass of the scalar field. We also measure the 2-point correlation function and correlation length of the scalar field in relation to the geodesic distance encoded in the spin foam. Our results are consistent with the correlation function of ordinary scalar lattice field theory defined on a fixed regular lattice with the emergent lattice spacing and the same mass. We conclude that in this regime of the model, the scalar field is not sensitive to the fluctuations of the spin foam and effectively behaves as if it is defined on a fixed regular lattice.