论文标题
Fregier椭圆
Fregier Ellipses
论文作者
论文摘要
我们介绍了Fregier椭圆形,该椭圆形概括了欧几里得几何形状中的Fregier点。主题与动力学系统有关,Poncelet的闭合定理AKA PONCELET PORISM和显示几何不变性(区域,角度)。强调了特殊角度的PI/3和2PI/3,我们表明我们在Poncelet配置中具有不变的Fregier圆圈的总和,这是从椭圆台球的仿射图中出现的。
We introduce Fregier ellipses which generalize the Fregier point in euclidean geometry. Subject is related to Dynamical Systems and Poncelet's closure theorem aka Poncelet porism and displaying geometric invariants (area,angles). Special angles pi/3 and 2pi/3 are emphasized and we show that we have invariant sum of areas for Fregier circles in general Poncelet configuration, occuring from an affine map of the elliptical billiard.