论文标题
半导体环激光频率梳子,带有主动方向耦合器
Semiconductor ring laser frequency combs with active directional couplers
论文作者
论文摘要
Fabry-Perot量子级联激光频率梳的快速开发使它们从实验室设备转换为下一代快速分子光谱仪的关键组成部分。最近,自由运行的环量子级联激光器允许产生由相位湍流引起的新频率梳状状态。在没有有效的光线偶联的情况下,环量子级联激光器不适合应用,因为它们的功率输出限制为微量瓦特水平。在这里,我们演示了带有积极的活性定向耦合器的电泵量量子级联激光器。这些设备会产生自动频率梳子,并在室温下具有超过十毫瓦的输出功率。我们研究了在激光阈值下方的环波导谐振系统的传输,该系统揭示了能够单独控制耦合谐振器中的模式索引,其质量因子和耦合系数的能力。当将环谐振器泵入激光阈值上方时,腔内单向单模字段参数会放大一个调谐到一个环共振中的外部注入的信号,从而通过四波混合产生惰轮。将外部光学信号注入集成激光腔的能力使环形半导体激光器中的频率梳状态具有连贯的控制。此外,在激光阈值下方泵送的可调耦合的活性谐振器使得可以进行一个多功能平台,以研究共振电磁效应,从强耦合到平均时间对称性破坏。
Rapid development of Fabry-Perot quantum cascade laser frequency combs has converted them from laboratory devices to key components of next-generation fast molecular spectrometers. Recently, free-running ring quantum cascade lasers allowed generation of new frequency comb states induced by phase turbulence. In absence of efficient light outcoupling, ring quantum cascade lasers are not suited for applications as they are limited in their power output to microwatt levels. Here we demonstrate electrically pumped ring quantum cascade lasers with integrated active directional couplers. These devices generate self-starting frequency combs and have output power above ten milliwatts at room temperature. We study the transmission of the ring-waveguide resonator system below the lasing threshold, which reveals the ability to individually control the mode indices in the coupled resonators, their quality factors, and the coupling coefficient. When the ring resonator is pumped above the lasing threshold, the intracavity unidirectional single-mode field parametrically amplifies an externally injected signal tuned into one of the ring resonances, generating an idler sideband via four-wave mixing. The ability to inject external optical signals into integrated laser cavities brings into reach coherent control of frequency comb states in ring semiconductor lasers. Furthermore, tunable coupled active resonators pumped below the lasing threshold enable a versatile platform for the studies of resonant electromagnetic effects, ranging from strong coupling to parity-time symmetry breaking.