论文标题
非热质体系中强大的量子回旋镖效应
Robust quantum boomerang effect in non-Hermitian systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Anderson localization is a general phenomenon that applies to a variety of disordered physical systems. Recently, a novel manifestation of Anderson localization for wave packets launched with a finite average velocity was proposed, the Quantum boomerang effect (QBE). This phenomenon predicts that the disorder-averaged center of mass of a particle initially moves ballistically, then makes a U-turn, and finally slowly returns to its initial position. The QBE has been predicted to take place in several Hermitian models with Anderson localization and has been experimentally observed in the paradigmatic quantum kicked rotor model. In this work, we investigate the emergence of the QBE in non-Hermitian systems and clarify the importance of symmetries of the Hamiltonian and the initial state. We generalize the analytical arguments available in the literature and show that even in the case of complex spectrum a boomerang-like behavior can appear in a non-Hermitian system. We confirm our analytical results through a careful numerical investigation of the dynamics for several non-Hermitian models. We find that non-Hermiticity leads to the breakdown of the dynamical relation, though the QBE is preserved. This work opens up new avenues for future investigations in Anderson localized systems. The models studied here may be implemented using cold atoms in optical lattices.