论文标题

在亚临界雷诺数上的不可压缩流的水平浸入边界方法

A Level-Set Immersed Boundary Method for Incompressible Flows at Subcritical Reynolds Numbers

论文作者

Boukharfane, Radouan

论文摘要

在这项工作中,采用了基于水平集浸入边界方法的数值方案,用于在亚临界流程中对两个串联圆缸的流量进行数值模拟。三个不同的间距比$ \ ell/\ MATHCAL {D} $(其中$ \ ell $是两个圆柱体之间的中心对中心距离,$ \ MATHCAL {D} $是$ 2 $ $ $ $ \ $ \ MATHCAL {D} $)。在两个串联圆柱体上的瞬时流量结构,压力分布和流体动力,以$ \ MATHCAL {R} \ MATHFRAK {E} = 2.2 \ times 10^4 $的雷诺数分析。该策略是基于狭窄带准确的保守水平设置方法和幽灵流体框架的组合。在此策略中,该界面定义为双曲线切线函数的异位孔,该函数由流体介入,然后定期重塑以使用基于改进形式的重新定位方程来强制实施降级的级别设置函数是签名的距离函数。后一种方法利用映射到经典的距离设置上,同时更好地保留界面形状。

In this work, a numerical scheme based on a level-set immersed boundary method is employed for the numerical simulation of the flow around two tandem circular cylinders in the subcritical flow regimes. Three different spacing ratios $\ell/\mathcal{D}$ (where $\ell$ is the center-to-center distance between the two cylinders with $\mathcal{D}$ being the diameter of the cylinders) from $2$ to $4$ is considered. The instantaneous flow structures, pressure distributions and hydrodynamic forces on two tandem cylinders are analyzed at a Reynolds number of $\mathcal{R}\mathfrak{e}=2.2\times 10^4$. The strategy is based on a combination of a narrow-band accurate conservative level set method and ghost-fluid framework. In this strategy, the interface is defined as the isocontour of a hyperbolic tangent function, which is advected by the fluid, and then periodically reshaped to enforce the degraded level set function being a signed distance function using a reinitialization equation based on an improved form. The latter approach takes advantage of a mapping onto a classical distance level set while much better preserving the interface shape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源