论文标题

几何中的中断

The geometric SMEFT

论文作者

Trott, Michael

论文摘要

有效的现场理论,例如标准模型有效场理论(SMEFT),是由所选的场含量和一组对称性定义的,最多可缩小规模$λ$。通常,为了执行计算,衡量独立场的重新定义与该理论的对称性一致,然后使用来重新定义字段。此过程产生固定(非冗余)操作员基础,这本身并不是字段重新定义不变的。最近,已经开发了一种识别和计算的替代方法。表征现场空间几何形状的场重新定义不变性在振幅扰动中出现在可观察的物体中,并且在本地运算符方面具有扩展。在SMEFT的情况下,通过几何方法计算被称为GeoSmeft。这种方法使SMEFT中的高订单以$ 1/λ$的高订单计算变得更加容易,并且可以直接导致$ 1/λ$扩展中的振幅扰动的完整表征。使用GeoSmeft,现在已知几种一致且完整的$ \ Mathcal {O}(1/λ^4)$结果。我们定义GeoSmeft,并在某些示例中证明了其用途。

Effective field theories, like the Standard Model Effective Field Theory (SMEFT), are defined by a chosen field content and a set of symmetries, up to a cut off scale $Λ$. Usually, in order to perform calculations, gauge independent field re-definitions consistent with the symmetries of the theory are then used to redefine the fields. This procedure results in a fixed (non-redundant) operator basis, that is not itself field re-definition invariant. Recently, an alternative approach of identifying and calculating with field space geometry has been developed. Field redefinition invariants, characterising field space geometry, appear in observables in amplitude perturbations, and have an expansion in terms of local operators. In the case of the SMEFT, calculating via the geometric approach is known as the geoSMEFT. This approach makes it much easier to calculate at high orders in $1/Λ$ in the SMEFT, and can directly result in a complete characterisation of an amplitude perturbation in the $1/Λ$ expansion. Using the geoSMEFT, several consistent and complete $\mathcal{O}(1/Λ^4)$ results are now known. We define the geoSMEFT and demonstrate its use in some examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源