论文标题

无穷大的刺穿管状邻域和稳定的同型

Punctured tubular neighborhoods and stable homotopy at infinity

论文作者

Déglise, Frédéric, Dubouloz, Adrien, Østvær, Paul Arne

论文摘要

我们启动了动机环境中无穷大的刺穿管状邻居和同质理论的研究。我们使用六个函子形式主义对代数品种无穷大的稳定动机同质类型给出固有的定义。我们的主要计算工具包括用于正常交叉分隔线的CDH淡季,Euler类,Gysin Maps和同型纯度。在$ \ ell $ -ADIC实现下,Infinity的动机恢复了由于Rapoport-Zink而消失的周期的公式; Steenbrink的限制性Hodge结构和野生车的边界动机也有类似的结果。在拓扑结构的实现下,代数品种无穷大的稳定动机同喻类型可在相应拓扑空间的无穷大范围内恢复单数复合物。我们就动机$ \ infty $ - 类别的同型平稳形态的概念构成了概念,并用它来显示对Morel-Voevodsky的虚拟矢量束的概括,从而产生了与Compact Support的Atiyah duality的升级形式。此外,我们研究了相交程度的二次完善,以动机共同体组为价值。对于相对表面,我们显示了Infinity的稳定动机同型类型,它是Mumford的管道结构的二次版本,用于光滑的复杂代数表面。我们在正常表面上稳定的动机联系的构建和计算完全用Dynkin图表表示。在特征p> 0中,这通过典型的本地基本群体改善了Artin对奇异性的分析。本文中的主要结果也适用于$ \ ell $ -ADIC束带,混合霍奇模块以及更一般的动机$ \ infty $ - 类别。

We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under $\ell$-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers the singular complex at infinity of the corresponding topological space. We coin the notion of homotopically smooth morphisms with respect to a motivic $\infty$-category and use it to show a generalization to virtual vector bundles of Morel-Voevodsky's purity theorem, which yields an escalated form of Atiyah duality with compact support. Further, we study a quadratic refinement of intersection degrees, taking values in motivic cohomotopy groups. For relative surfaces, we show the stable motivic homotopy type at infinity witnesses a quadratic version of Mumford's plumbing construction for smooth complex algebraic surfaces. Our construction and computation of stable motivic links of Du Val singularities on normal surfaces is expressed entirely in terms of Dynkin diagrams. In characteristic p>0, this improves Artin's analysis on Du Val singularities through étale local fundamental groups. The main results in the paper are also valid for $\ell$-adic sheaves, mixed Hodge modules, and more generally motivic $\infty$-categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源