论文标题

戈德巴赫和波利尼亚克猜想的证明

A Proof of the Goldbach and Polignac Conjectures

论文作者

South, Jason R.

论文摘要

本文将通过使用代数方法来提供对Goldbach猜想的反示例所需的必要条件,在这种情况下,不需要对质数之间的差距了解。为了消除歧义的自然数字集,$ \ mathbb {n} $在本文中将包括零。另外,对于任何足够大的$ a \ in \ mathbb {n} $,set $ \ mathcal {p} $是所有Primes $ p_i \ leq a $的集合。它将显示出与Goldbach猜想的反例,由$ 2a $给出,其中$ a \ in \ mathbb {n} _ {> 3} $,仅当且仅当每个prime $ p_i \ in \ nathcal in \ mathcal {p} $时$ \ MATHCAL {G} _-:\ MATHBB {C} \ TO \ MATHBB {C} $其中\ begin \ begin {qore*} \ Mathcal {g} _--(z)= \ prod_ = \ prod_i {p_i {p_i {p_i { \ Mathcal {p}} p_i^{α_i}:\ Mathcal {g} _-(2a)= 0。当一个偶数数字不是两个素数的差异,一个素数小于该数字时,将采用类似的方法来提供必要和充分的条件。然后,将通过利用Hensel的引理和加泰罗尼亚的猜想,表明$ a = 3 $是最大的解决方案,并且不存在反例,这将证明每个偶数数字都是两个素数的差异。然后将遵循Polignac猜想的证明。

This paper will give both the necessary and sufficient conditions required to find a counter-example to the Goldbach Conjecture by using an algebraic approach where no knowledge of the gaps between prime numbers is needed. To eliminate ambiguity the set of natural numbers, $\mathbb{N}$, will include zero throughout this paper. Also, for any sufficiently large $a \in \mathbb{N}$ the set $\mathcal{P}$ is the set of all primes $p_i \leq a$. It will be shown there exists a counter-example to the Goldbach Conjecture, given by $2a$ where $a \in \mathbb{N}_{> 3}$, if and only if for each prime $p_i \in \mathcal{P}$ there exists some unique $α_i \in \mathbb{N}$ and a mapping $\mathcal{G}_-:\mathbb{C} \to \mathbb{C}$ where \begin{equation*} \mathcal{G}_-(z) = \prod_{p_i \in \mathcal{P}}(z - p_i) - \prod_{p_i \in \mathcal{P}}p_i^{α_i} : \mathcal{G}_-(2a) = 0. \end{equation*} A proof of the Goldbach Conjecture will be given utilizing Hensel's Lemma and Catalan's Conjecture showing that $a = 3$ is the largest solution and no counter-examples exist. A similar method will be employed to give the necessary and sufficient conditions when an even number is not the difference of two primes with one prime being less than that even number. A proof will then be given that every even number is the difference of two primes by utilizing Hensel's Lemma and Catalan's Conjecture showing that $a = 3$ is the largest solution and no counter-examples exist. A proof of the Polignac Conjecture will then follow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源