论文标题

部分可观测时空混沌系统的无模型预测

A crypto-regularity result for the micropolar fluids equations

论文作者

Chamorro, Diego, Llerena, David

论文摘要

在对PDE的分析中,通常以Sobolev,H {Ö} lder,Besov或Lipschitz空间等来衡量的规律性。但是,有时,通过从奇异的环境传递到较不奇异的环境,有时也可以通过Lebesgue Space来表达规律性的增长。在本文中,我们将使用作为通用框架莫雷空间来获得微极流体方程的弱解的可集成性,这是一种非常有用的语言,可用于研究PDES中的规律性。一个有趣的点是,可以分别研究微极流体方程的两个变量。

In the analysis of PDEs, regularity of often measured in terms of Sobolev, H{ö}lder, Besov or Lipschitz spaces, etc. However, sometimes a gain of regularity can also be expressed just in terms of Lebesgue spaces, by passing from a singular setting to a less singular one. In this article we will obtain a gain of integrability for weak solutions of the micropolar fluid equations using as general framework Morrey spaces, which is a very useful language to study regularity in PDEs. An interesting point is that the two variables of the micropolar fluid equations can be studied separately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源