论文标题
通过增强学习优化基于测量的冷却
Optimizing measurement-based cooling by reinforcement learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Conditional cooling-by-measurement holds a significant advantage over its unconditional (nonselective) counterpart in the average-population-reduction rate. However, it has a clear weakness with respect to the limited success probability of finding the detector in the measured state. In this work, we propose an optimized architecture to cool down a target resonator, which is initialized as a thermal state, using an interpolation of conditional and unconditional measurement strategies. An optimal measurement-interval $τ_{\rm opt}^u$ for unconditional measurement is analytically derived for the first time, which is inversely proportional to the collective dominant Rabi frequency $Ω_d$ as a function of the resonator's population in the end of the last round. A cooling algorithm under global optimization by the reinforcement learning results in the maximum value for the cooperative cooling performance, an indicator to measure the comprehensive cooling efficiency for arbitrary cooling-by-measurement architecture. In particular, the average population of the target resonator under only $16$ rounds of measurements can be reduced by four orders in magnitude with a success probability about $30\%$.