论文标题
无序量子链的动态电导率
Dynamical conductivity of disordered quantum chains
论文作者
论文摘要
我们研究具有无序的一维量子系统的运输特性。我们通过使用Chebyshev矩阵乘积(CHEMPS)方法来计算费米子链与最近的邻居相互作用和随机化学电位的电导率的频率依赖性。作为基准,我们首先研究了非相互作用案例。与精确的对角和分析溶液的比较表明,化学物质的结果在较大的频率上是可靠的。然后,我们计算相互作用系统的动态电导率光谱,以实现相互作用和混乱强度的各种值。在高频制度中,电导率作为幂定律衰减,具有相互作用的指数。尽管指数的数值评估显示出与分析期望值的偏差,但这种行为在质量上与琼脂化场理论预测一致。我们还计算出出现电导率峰值的特征固定频率。我们确认它与本地化长度的倒数直接相关,即使在相互作用的情况下也是如此。我们证明,定位长度遵循该障碍强度的力量定律,指数取决于相互作用,并与现场理论预测找到良好的定量一致性。在低频制度中,我们发现与非相互作用系统之一$ω^{2}(\lnΩ)^{2} $独立于交互的行为一致。我们讨论了我们发现冷原子气体实验的结果。
We study the transport properties of a one dimensional quantum system with disorder. We numerically compute the frequency dependence of the conductivity of a fermionic chain with nearest neighbor interaction and a random chemical potential by using the Chebyshev matrix product state (CheMPS) method. As a benchmark, we investigate the noninteracting case first. Comparison with exact diagonalization and analytical solutions demonstrates that the results of CheMPS are reliable over a wide range of frequencies. We then calculate the dynamical conductivity spectra of the interacting system for various values of the interaction and disorder strengths. In the high frequency regime, the conductivity decays as a power law, with an interaction dependent exponent. This behavior is qualitatively consistent with the bosonized field theory predictions, although the numerical evaluation of the exponent shows deviations from the analytically expected values. We also compute the characteristic pinning frequency at which a peak in the conductivity appears. We confirm that it is directly related to the inverse of the localization length, even in the interacting case. We demonstrate that the localization length follows a power law of the disorder strength with an exponent dependent on the interaction, and find good quantitative agreement with the field theory predictions. In the low frequency regime, we find a behavior consistent with the one of the noninteracting system $ω^{2}(\lnω)^{2}$ independently of the interaction. We discuss the consequences of our finding for experiments in cold atomic gases.