论文标题
Bose-Einstein冷凝物在盒状陷阱中的淬灭动力学
Quench dynamics of Bose-Einstein condensates in boxlike traps
论文作者
论文摘要
我们通过淬灭原子间相互作用,研究了具有幂律势边界的二维Bose-Einstein冷凝物的非平衡动力学。对于凹面电势和凸电势,我们表明在淬火动力学期间可以激发环形孤子。淬火强度和边界的陡度是影响系统演化的两个主要因素。鉴定出有关在冷凝水中激发的环形孤子数的数量的五个动态状态。对于没有环形孤子激发的情况,冷凝物经历了降低半径振荡。至于环形孤子的出现,有趣的结构是由于它们的腐烂而产生的。为了凹面电位,激发模式显示了涡流 - 抗体对的嵌套结构。另一方面,对于凸电势,动态激发模式显示了具有多种运输行为的更丰富的结构。
We investigate the nonequilibrium dynamics of two-dimensional Bose-Einstein condensates in boxlike traps with power-law potential boundaries by quenching the interatomic interactions. For both concave and convex potentials, we show that ring dark solitons can be excited during the quench dynamics. The modulation strength of the quench and the steepness of the boundary are two main factors affecting the evolution of the system. Five dynamic regimes are identified concerning the number of ring dark solitons excited in the condensate. For the situation without ring dark soliton excitations, the condensate undergoes damped radius oscillation. As far as the appearance of ring dark solitons, interesting structures arise from their decay. For the concave potential, the excitation patterns show a nested structure of vortex-antivortex pairs. For the convex potential, on the other hand, the dynamic excitation patterns display richer structures that have multiple transport behaviors.