论文标题
通过非立方体的函子演算
Functor calculus via non-cubes
论文作者
论文摘要
我们研究了与立方体以外的其他索引图的Goodwillie函子的计算。我们尤其在较大的图表中构建了通用的兴奋性近似值,这产生了泰勒塔的延伸。我们证明,这种扩展的极限与泰勒塔的极限相符,该标准是在兴奋性近似之间存在地图的标准。最后,我们研究了我们的新切除概念与经典的新概念相吻合。
We study versions of Goodwillie's calculus of functors for indexing diagrams other than cubes. We in particular construct universal excisive approximations for a larger class of diagrams, which yields an extension of the Taylor tower. We prove that the limit of this extension agrees with the limit of the Taylor tower using criteria for the existence of maps between excisive approximations. Lastly we investigate in which cases our new notions of excision coincide with classical ones.