论文标题
在多效性dy $ _ {1-x} $ ho $ _x $ mno $ _3 $($ x = 0,0.2 $)
Complex interplay between 3d and 4f magnetic systems and magnetic chirality in multiferroic Dy$_{1-x}$Ho$_x$MnO$_3$ ($x = 0, 0.2$)
论文作者
论文摘要
通过不同的和经典的中子衍射和巨型方法的不同方法,研究了DY $ _ {1-x} $ _x $ mno $ _3 $的结构,磁性和多种特性($ _ {1-x} $ ho $ _x $ mno $ _3 $($ x = 0,0.2 $)。结果表明,在dy位置替换为20%,不要改变化合物的总体晶体对称性。它仍然是两种组合物的PNMA类型,直到非常低的温度。磁性排序不会改变晶体结构。精确的磁性阶及其在原始化合物和取代化合物中详细介绍了我们使用单晶中子衍射和磁化测量结果确定的。结果表明,过渡金属与后地球磁性子晶格之间存在复杂的相互作用,导致所谓的“ MN控制”和“ Dy-Controllroll”磁状态。使用Dy $ _ {0.8} $ ho $ _ {0.2} $ MNO $ _3 $合同的偏振中子衍射3D特性,以Dy $ _ {0.8} $ _ HO $ _ $ _ $ _ $ _ $ _3 $ $ _3 $,并且可以揭示MN子系统上的手型磁性结构的发生。可以直接证明外部电场对磁性手性的影响,证明在多效相中,强磁电耦合。在相同样品上对电气极化的研究研究提供了显微镜和宏观研究结果之间的直接相关性。
Structural, magnetic and multiferroic properties of single crystals of Dy$_{1-x}$Ho$_x$MnO$_3$ ($x = 0, 0.2$) were investigated by the different methods of polarized and classical neutron diffraction and macroscopic methods in order to determine the effect of Ho doping on the magneto-electric behavior of the title compounds. It is shown that substitution by Ho of 20% on the position of Dy do not change overall crystal symmetry of compound. It remains of Pnma type for both compositions down to the very low temperatures. Magnetic ordering do not change the crystal structure. Precise magnetic order and it detailed temperature and field evolution both in the pristine and substituted compounds we determined using single crystal neutron diffraction and magnetization measurements. The results show a complex interplay between transition metal and rear earth magnetic sub lattices leading to so-called "Mn-controlled" and "Dy-controlled" magnetic states. Using polarized neutron diffraction 3D character of rear earth magnetic order in Dy$_{0.8}$Ho$_{0.2}$MnO$_3$ in contract to DyMnO$_3$ and occurrence of the chiral type magnetic structure on Mn subsystem could be revealed. The influence of the external electric field on the magnetic chirality could be directly evidenced, proving strong magneto-electric coupling in multiferroic phase. The study of the electric polarization under similar temperatures and fields on the same samples provides the direct correlation between the results of the microscopic and macroscopic investigations.