论文标题

一般非线性动力学的管家和过量的熵产生

Housekeeping and excess entropy production for general nonlinear dynamics

论文作者

Yoshimura, Kohei, Kolchinsky, Artemy, Dechant, Andreas, Ito, Sosuke

论文摘要

我们建议在离散空间中,包括化学反应网络和离散随机系统在内的一般非线性动力学的熵产生的管家/过量分解。我们利用热力学的几何结构来定义分解。这不依赖于稳态的概念,甚至适用于表现出多种性,限制周期和混乱的系统。在分解中,动力学的不同方面分别促进了熵的产生:管家部分源于循环模式,该模式源于外部驾驶,概括了Schnakenberg的环状分解对非稳态状态,而多余的部分源于瞬时的放松模式,源于保守的力量。我们的分解完善了先前已知的热力学不确定性关系和速度限制。特别是,它不仅改善了最佳传播理论速度限制,而且还将离散系统的最佳传输理论扩展到了非线性和非保守设置。

We propose a housekeeping/excess decomposition of entropy production for general nonlinear dynamics in a discrete space, including chemical reaction networks and discrete stochastic systems. We exploit the geometric structure of thermodynamic forces to define the decomposition; this does not rely on the notion of a steady state, and even applies to systems that exhibit multistability, limit cycles, and chaos. In the decomposition, distinct aspects of the dynamics contribute separately to entropy production: the housekeeping part stems from a cyclic mode that arises from external driving, generalizing Schnakenberg's cyclic decomposition to non-steady states, while the excess part stems from an instantaneous relaxation mode that arises from conservative forces. Our decomposition refines previously known thermodynamic uncertainty relations and speed limits. In particular, it not only improves an optimal-transport-theoretic speed limit, but also extends the optimal transport theory of discrete systems to nonlinear and nonconservative settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源