论文标题

左切割和诱导的sidorenko bigraphs

Left-cut-percolation and induced-Sidorenko bigraphs

论文作者

Coregliano, Leonardo N.

论文摘要

Sidorenko Bigraph是一个在Bigraphon $ w $中的密度在$ W $恒定时的最小化。文献的几种技术证明了Sidorenko属性包括将(通常在树分解中)分解为具有更强特性的较小构件。这种突出的技术是conlon的$ n $ compositions-lee,它使用弱的Hölder(或弱规范)Bigraphs作为构件。反过来,为了获得弱的hölderbigraphs,通常使用含义的含义bigraph $ \ \ \ \ cut cut-cut-percolating bigraph $ \ theme是薄弱的hölderbigraph。在Razborov作者的较早结果中,我们提供了$ n $分解的概括,称为Reflective Tree Decompositions,这些分解使用了较弱的构建块,称为诱导的Sidorenko Bigraphs,还可以获得Sidorenko Bigraphs。 在本文中,我们表明了反射bigraph和剪切的bigraph概念的“左侧”版本产生了类似的含义链:左反射bigraph $ \暗示$左切 - 渗透bigraph $ \暗示$暗示$诱导的 - 诱导的sidorenko bigraph。我们还表明,在轻度假设下,可以使用弱的霍德特性的“左侧”类似物(也可以通过类似的含义链获得)来改善Conlon的另一个结果的界限-Lee- lee大致表明,大的bigraphs在每个实现程度的右侧具有足够的顶点,具有sidorenko属性。

A Sidorenko bigraph is one whose density in a bigraphon $W$ is minimized precisely when $W$ is constant. Several techniques of the literature to prove the Sidorenko property consist of decomposing (typically in a tree decomposition) the bigraph into smaller building blocks with stronger properties. One prominent such technique is that of $N$-decompositions of Conlon--Lee, which uses weakly Hölder (or weakly norming) bigraphs as building blocks. In turn, to obtain weakly Hölder bigraphs, it is typical to use the chain of implications reflection bigraph $\implies$ cut-percolating bigraph $\implies$ weakly Hölder bigraph. In an earlier result by the author with Razborov, we provided a generalization of $N$-decompositions, called reflective tree decompositions, that uses much weaker building blocks, called induced-Sidorenko bigraphs, to also obtain Sidorenko bigraphs. In this paper, we show that "left-sided" versions of the concepts of reflection bigraph and cut-percolating bigraph yield a similar chain of implications: left-reflection bigraph $\implies$ left-cut-percolating bigraph $\implies$ induced-Sidorenko bigraph. We also show that under mild hypotheses, the "left-sided" analogue of the weakly Hölder property (which is also obtained via a similar chain of implications) can be used to improve bounds on another result of Conlon--Lee that roughly says that bigraphs with enough vertices on the right side of each realized degree have the Sidorenko property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源