论文标题
在多组分金堡 - 兰道涡流系统上
On a system of multi-component Ginzburg-Landau vortices
论文作者
论文摘要
我们将$ n $ - 组成的金茨堡 - 兰道方程的解决方案的渐近行为描述为$ \ ve \ to $ to $。我们证明,最小化器在任何$ c^k $ norm中都在本地收敛到广义谐波方程系统的解决方案。
We study the asymptotic behavior of solutions for $n$-component Ginzburg-Landau equations as $\ve \to 0$. We prove that the minimizers converges locally in any $C^k$-norm to a solution of a system of generalized harmonic map equations.