论文标题
渐近自在的空间对称性的对称性
Symmetries of the asymptotically de Sitter spacetimes
论文作者
论文摘要
我们开始对爱因斯坦方程的渐近位溶液的可能异构体进行系统的研究。我们将杀戮方程式重新制定为$ \ Mathcal {i}^+$的初始数据的共形方程。这允许部分分类可能的对称代数。特别是,如果它们不是最大的,那么它们最多可能是$ 4 $维度。我们提供了几个例子。作为一个简单的碰撞,它表明,唯一的时空相交$ \ MATHCAL {I}^+$(在完整完成后)是本地的Sitter Universe。
We start a systematic investigation of possible isometries of the asymptotically de Sitter solutions to Einstein equations. We reformulate the Killing equation as conformal equations for the initial data at $\mathcal{I}^+$. This allows for partial classification of possible symmetry algebras. In particular, if they are not maximal, they may be at most $4$-dimensional. We provide several examples. As a simple collorary it is shown that the only spacetime in which the Killing horizon intersects $\mathcal{I}^+$ (after a conformal completion) is locally the de Sitter universe.