论文标题
静态障碍的受监测量子动力学中的无限随机性临界
Infinite-randomness criticality in monitored quantum dynamics with static disorder
论文作者
论文摘要
我们考虑了具有淬火空间随机性的受监视量子动力学模型:具体来说,具有空间变化的测量速率的随机量子电路。这些电路在其纠缠结构中经历了测量引起的相变(MIPT),但是临界点的性质与恒定测量率的情况大不相同。特别是,以关键的测量率,我们发现,大小$ \ ell $ scales的子系统作为$ s \ sim \ sqrt {\ ell} $;此外,动态关键指数$ z = \ infty $。 MIPT的两侧是Griffiths阶段,其动力学指数不断变化。我们以一般理由为这种无限的随机场景主张,并提供了数值证据,表明它使用Clifford Circuts的大规模模拟捕获了MIPT通用临界特性的某些特征。这些发现表明,使用称为Harris Criterion的强大启发式方法可以自然地解释扰动与MIPT的相关性和无关紧要。
We consider a model of monitored quantum dynamics with quenched spatial randomness: specifically, random quantum circuits with spatially varying measurement rates. These circuits undergo a measurement-induced phase transition (MIPT) in their entanglement structure, but the nature of the critical point differs drastically from the case with constant measurement rate. In particular, at the critical measurement rate, we find that the entanglement of a subsystem of size $\ell$ scales as $S \sim \sqrt{\ell}$; moreover, the dynamical critical exponent $z = \infty$. The MIPT is flanked by Griffiths phases with continuously varying dynamical exponents. We argue for this infinite-randomness scenario on general grounds and present numerical evidence that it captures some features of the universal critical properties of MIPT using large-scale simulations of Clifford circuits. These findings demonstrate that the relevance and irrelevance of perturbations to the MIPT can naturally be interpreted using a powerful heuristic known as the Harris criterion.