论文标题

算术环的度数

A degree bound for rings of arithmetic invariants

论文作者

Mundelius, David

论文摘要

考虑一个Noetherian域$ r $和有限的组$ g \ subseteq gl_n(r)$。我们证明,如果不变的环$ r [x_1,\ ldots,x_n]^g $是cohen-macaulay戒指,那么它将以$ r $ -Algebra的形式生成$ r $ -Algebra,该元素最多是$ \ max(| g |,n(| g | -1))$。作为中级结果,我们还表明,如果$ r $是具有无限残留场的Noetherian本地戒指,那么这样的有限组$ g $ i $ r $的不变式戒指包含一个均质的参数系统,该参数最多包含$ | g | $的元素。

Consider a Noetherian domain $R$ and a finite group $G \subseteq Gl_n(R)$. We prove that if the ring of invariants $R[x_1, \ldots, x_n]^G$ is a Cohen-Macaulay ring, then it is generated as an $R$-algebra by elements of degree at most $\max(|G|,n(|G|-1))$. As an intermediate result we also show that if $R$ is a Noetherian local ring with infinite residue field then such a ring of invariants of a finite group $G$ over $R$ contains a homogeneous system of parameters consisting of elements of degree at most $|G|$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源