论文标题

对Ramana的精确对偶的简化处理,用于半决赛编程

A Simplified Treatment of Ramana's Exact Dual for Semidefinite Programming

论文作者

Lourenço, Bruno F., Pataki, Gábor

论文摘要

在半决赛编程中,二元组可能无法达到其最佳值,并且可能存在二元性差距,即,原始和双重最佳值可能会有所不同。在一篇引人注目的论文中,拉马纳提出了一个多项式尺寸扩展双重双重,没有这些缺陷,并在复杂性理论中产生许多基本结果。在这项工作中,我们主要依靠基本的线性代数,使读者浏览Ramana双重的简洁且独立的派生。

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. In this work we walk the reader through a concise and self-contained derivation of Ramana's dual, relying mostly on elementary linear algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源