论文标题

重型费米昂奇怪金属的光导率是普朗克的吗?

Is the optical conductivity of heavy fermion strange metals Planckian?

论文作者

Li, Xinwei, Kono, Junichiro, Si, Qimiao, Paschen, Silke

论文摘要

奇怪的金属行为出现在各种凝聚的物质环境中,而实现普遍理解是一个令人兴奋的前景。北极巨人破坏的超越量子的关键性在描述奇怪的金属重费式化合物的行为方面取得了很大的成功,并且有证据表明,相关的部分定位 - 迁移性质可以推广到各种材料类别。还探讨了其他潜在的总体原则。一个有趣的建议是,普朗克散射的速度为$ k _ {\ rm b} t/\ hbar $,导致(DC)电阻率的线性温度依赖性,这是奇怪的金属行为的标志。在这里,我们基于对光导率数据的DC电阻率的DRUDE描述扩展了先前引入的分析方案。当它们用简单的(AC)DRUDE模型很好地描述时,可以直接提取散射速率。这避免了需要确定电荷载体浓度与有效质量的比率,这使得基于DC电阻率的先前分析复杂。但是,我们指出,奇怪的金属通常表现出与drude行为的巨大偏差,例如``极端''奇怪的金属ybrh $ _2 $ si $ _2 $。这要求采用替代方法,我们指出了光导率的非弹性部分的奇怪金属动力学(能量过度)缩放分析的力量。如果这种缩放范围扩展到低频限制,则可以估算一个奇怪的金属松弛率,并最终可以用来测试奇怪的金属是否以普兰克的方式放松。

Strange metal behavior appears across a variety of condensed matter settings and beyond, and achieving a universal understanding is an exciting prospect. The beyond-Landau quantum criticality of Kondo destruction has had considerable success in describing the behavior of strange metal heavy fermion compounds, and there is some evidence that the associated partial localization-delocalization nature can be generalized to diverse materials classes. Other potential overarching principles at play are also being explored. An intriguing proposal is that Planckian scattering, with a rate of $k_{\rm B}T/\hbar$, leads to the linear temperature dependence of the (dc) electrical resistivity, which is a hallmark of strange metal behavior. Here we extend a previously introduced analysis scheme based on the Drude description of the dc resistivity to optical conductivity data. When they are well described by a simple (ac) Drude model, the scattering rate can be directly extracted. This avoids the need to determine the ratio of charge carrier concentration to effective mass, which has complicated previous analyses based on the dc resistivity. However, we point out that strange metals typically exhibit strong deviations from Drude behavior, as exemplified by the ``extreme'' strange metal YbRh$_2$Si$_2$. This calls for alternative approaches, and we point to the power of strange metal dynamical (energy-over-temperature) scaling analyses for the inelastic part of the optical conductivity. If such scaling extends to the low-frequency limit, a strange metal relaxation rate can be estimated, and may ultimately be used to test whether strange metals relax in a Planckian manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源