论文标题

时间依赖性标量场的动态缩放对称性和渐近量子相关性

Dynamical scaling symmetry and asymptotic quantum correlations for time-dependent scalar fields

论文作者

Chandran, S. Mahesh, Shankaranarayanan, S.

论文摘要

在时间无关的量子系统中,纠缠熵具有固有的缩放对称性,该系统的能量没有。对称性还确保熵差异可以与零模式相关联。我们将这种对称性概括为时间依赖性系统,从具有时间依赖频率的耦合谐波振荡器到具有时间依赖性质量的量子标量场。我们表明,此类系统具有动态缩放对称性,它留下了各种量子相关性量度不变的演变 - 纠缠熵,GS保真度,Loschmidt Echo和电路复杂性。使用这种对称性,我们表明,当系统发展不稳定性时,几个量子相关性在后期相关。然后,我们根据争夺时间和Lyapunov指数来量化此类不稳定性。发现Loschmidt Echo的指数衰减的延迟开始是由系统中最大的倒置模式确定的。另一方面,零模式在更长的时间内保留了有关系统的信息,最终导致了洛斯米特回声的幂律衰减。我们将分析扩展到$(1 + 1) - $尺寸的时间相关的大规模标量字段,并讨论零模式和倒置模式在后期发生的零模式和倒置模式的含义。对于具有稳定模式或零模型的标量字段,我们明确显示熵缩放率在\ emph {aketlaw}和\ emph {volume-law}之间振荡。然后,我们对宇宙和黑洞空间时间中标量场的上述效果进行定性讨论。

In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have. The symmetry also assures that entropy divergence can be associated with the zero modes. We generalize this symmetry to time-dependent systems all the way from a coupled harmonic oscillator with a time-dependent frequency, to quantum scalar fields with time-dependent mass. We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant -- entanglement entropy, GS fidelity, Loschmidt echo, and circuit complexity. Using this symmetry, we show that several quantum correlations are related at late-times when the system develops instabilities. We then quantify such instabilities in terms of scrambling time and Lyapunov exponents. The delayed onset of exponential decay of the Loschmidt echo is found to be determined by the largest inverted mode in the system. On the other hand, a zero-mode retains information about the system for a considerably longer time, finally resulting in a power-law decay of the Loschmidt echo. We extend the analysis to time-dependent massive scalar fields in $(1 + 1)-$dimensions and discuss the implications of zero-modes and inverted modes occurring in the system at late-times. We explicitly show the entropy scaling oscillates between the \emph{area-law} and \emph{volume-law} for a scalar field with stable modes or zero-modes. We then provide a qualitative discussion of the above effects for scalar fields in cosmological and black-hole space-times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源