论文标题
多项式时间的有限组的形成:$ \ Mathfrak {f} $ - 残差和$ \ Mathfrak {f} $ - 亚正常
Formations of Finite Groups in Polynomial Time: $\mathfrak{F}$-residuals and $\mathfrak{F}$-subnormality
论文作者
论文摘要
对于一个广泛的地层家庭,$ \ mathfrak {f} $,证明可以在多项式时间内计算置换有限群的$ \ mathfrak {f} $。此外,如果在以前的情况下,$ \ mathfrak {f} $是遗传性的,则可以在多项式时间内检查子组的$ \ mathfrak {f} $ - 子组的子态度。
For a wide family of formations $\mathfrak{F}$ it is proved that the $ \mathfrak{F}$-residual of a permutation finite group can be computed in a polynomial time. Moreover, if in the previous case $\mathfrak{F}$ is hereditary, then an $\mathfrak{F}$-subnormality of a subgroup can be checked in a polynomial time.