论文标题

界图的光谱测量和主导顶点

Spectral measures and dominant vertices in graphs of bounded degree

论文作者

Bruchez, Claire, de la Harpe, Pierre, Nagnibeda, Tatiana

论文摘要

图形$ g =(v,e)的界限$具有邻接运算符〜$ a $,该$ a $作用于Hilbert Space $ \ ell^2(v)$。 $ a $ $ a $的频谱$σ(a)$σ有不同类型的措施。特别是,\ ell^2(v)$ in \ ell^2(v)$ in $σ$ in $σ(a)$上的每个向量$ξ\ in \ ell^2(v)$;因此,每个顶点$ v \ in v $ in \ ell^2(v)$定义了vector $Δ_v\ un $σ(a)$的关联度量$μ_v$。对于$μ_v$,对于所有$ w \ in v $中的所有$ w \,对于$μ_v$,$μ_w$绝对是连续的(然后遵循所有$ξ\ in \ ell^2(v)$,该量$μ_$ __en配对绝对连续$μ_v$)。本文的主要目的是表明所有可能性都发生了:在某些图中,例如在顶点传播图中,所有顶点都是主导的;在其他图中,只有一些顶点是主导的。并且有没有主要顶点的图形。

A graph $G = (V, E)$ of bounded degree has an adjacency operator~$A$ which acts on the Hilbert space $\ell^2(V)$. There are different kinds of measures of interest on the spectrum $Σ(A)$ of $A$. In particular, each vector $ξ\in \ell^2(V)$ defines a local spectral measure $μ_ξ$ at $ξ$ on $Σ(A)$; therefore each vertex $v \in V$ defines a vector $δ_v \in \ell^2(V)$ and the associated measure $μ_v$ on $Σ(A)$. A vertex $v$ is dominant if, for all $w \in V$, the measure $μ_w$ is absolutely continuous with respect to $μ_v$ (it then follows that, for all $ξ\in \ell^2(V)$, the measure $μ_ξ$ is absolutely continuous with respect to $μ_v$). The main object of this paper is to show that all possibilities occur: in some graphs, for example in vertex-transitive graphs, all vertices are dominant; in other graphs, only some vertices are dominant; and there are graphs without dominant vertices at all.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源