论文标题

希尔伯特操作员和衍生产品的范围,以$ h^1 $为代表

The range of Hilbert operator and Derivative-Hilbert operator acting on $H^1$

论文作者

Zhao, Liyun, Wang, Zhenyou, Su, Zhirong

论文摘要

令$μ$为间隔$ [0,1)$的积极borel量度。 hankel矩阵$ \ Mathcal {h}_μ=(μ_{n,k})_ {n,k \ geq0} $带有条目$μ_{n,k} =μ__{n+k} $对于$ f(z)= \ sum_ {n = 0}^{\ infty} a_nz^n $是$ \ mathbb {d} $中的分析函数,希尔伯特操作员定义了$$ \ MATHCAL {h}_μ(f)(z)= \ sum_ {n = 0}^{\ infty} \ bigG(\ sum_ {k = 0}^{\ infty}^{\ infty}μ__{操作员的定义为$ \ Mathcal {dh}_μ(f)(z)= \ sum_ {n = 0}^{\ infty} \ bigG(\ sum_ {k = 0}^{\ infty} {\ infty}^{ \ Mathbb {d}。$$在本文中,我们确定了希尔伯特操作员和衍生物 - 希尔伯特操作员的范围,该操作员在$ h^{\ infty} $上作用。

Let $μ$ be a positive Borel measure on the interval $[0,1)$. The Hankel matrix $\mathcal{H}_μ=(μ_{n,k})_{n,k\geq0}$ with entries $μ_{n,k}=μ_{n+k}$, where $μ_n=\int_{[0,1)}t^{n}dμ(t)$. For $f(z)=\sum_{n=0}^{\infty}a_nz^n$ is an analytic function in $\mathbb{D}$, the Hilbert operator is defined by $$\mathcal{H}_μ(f)(z)=\sum_{n=0}^{\infty}\Bigg(\sum_{k=0}^{\infty}μ_{n,k}a_k\Bigg)z^n, \quad z\in \mathbb{D}.$$ The Derivative-Hilbert operator is defined as $$\mathcal{DH}_μ(f)(z)=\sum_{n=0}^{\infty}\Bigg(\sum_{k=0}^{\infty}μ_{n,k}a_k\Bigg)(n+1)z^n, \quad z\in \mathbb{D}.$$ In this paper, we determine the range of the Hilbert operator and Derivative-Hilbert operator acting on $H^{\infty}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源