论文标题
关于奥斯兰德代数的倾斜模块的数量
On the number of tilting modules over a class of Auslander algebras
论文作者
论文摘要
令$λ$为dynkin颤抖的激进平方零代数,让$γ$为$λ$的Auslander代数。然后,如果$λ$是$ a_ {m} $ type of $ m \ geq 1 $,那么$γ$ -Modules的倾斜$γ$ -Modules的数量为$ 2^{m-1} $。否则,如果$λ$是$ d_ {m} $类型的$ m \ geq 4 $或$ e_ {m} $ type $ m = 6,7,7,7,7,8 $,则倾斜右$γ$ -Modules的数量为$ 2^{m-3} \ times14 $。
Let $Λ$ be a radical square zero algebra of a Dynkin quiver and let $Γ$ be the Auslander algebra of $Λ$. Then the number of tilting right $Γ$-modules is $2^{m-1}$ if $Λ$ is of $A_{m}$ type for $m\geq 1$. Otherwise, the number of tilting right $Γ$-modules is $2^{m-3}\times14$ if $Λ$ is either of $D_{m}$ type for $m\geq 4$ or of $E_{m}$ type for $m=6,7,8$.