论文标题

正常品种上的可允许的Hermitian-Yang-Mills连接

Admissible Hermitian-Yang-Mills connections over normal varieties

论文作者

Chen, Xuemiao

论文摘要

在本文中,我们首先证明了Donaldson-Uhlenbeck-yau定理的完整版本,包括正常品种,包括正常的Kaehler品种和具有多个极化的投射正常品种。特别是,这给出了在对称和外部力量和张量产物下反身滑轮的多stanity。由于奇异的Donaldson-Uhlenbeck-yau定理,由于表明可允许的Hermitian-Yang-Yang-Mills连接定义了多稳定性的反射性毛茸茸,因此在正常品种方面的完整Hitchin-Kobayashi对应是平滑的。此外,据表明,Hermitian-Yang-Mills连接为任何Kaehler分辨率的判别物提供了下限,这给出了Bogomolov-Gieseker的不平等,而不是正常品种,并使用Project Project flat flat Connections来表征平等。我们讨论了典型的情况,包括正常表面和在Codimension二中平滑的品种,我们可以简化Bogomolov-Gieseker的不平等,并赋予其具有拓扑含义。我们还证明了Bogomolov-gieseker的不平等现象,可用于半固定的反身滑轮,并表征满足Bogomolov-gieseker平等的可半固定滑轮类。最后,作为另一个应用程序,我们为当普通的Kaehler品种具有微不足道的Chern类是有限的圆环商人时给出了新标准。

In this paper, we first prove a complete version of the Donaldson-Uhlenbeck-Yau theorem over normal varieties, including normal Kaehler varieties and projective normal varieties with multiple polarizations. In particular, this gives the polystability of reflexive sheaves under symmetric and exterior powers and tensor products. As a consequence of the singular Donaldson-Uhlenbeck-Yau theorem, the complete Hitchin-Kobayashi correspondence over normal varieties smooth in codimension two is built by showing that an admissible Hermitian-Yang- Mills connection defines a polystable reflexive sheaf. Furthermore, it is shown that the Hermitian-Yang-Mills connection gives a lower bound for the discriminants of any Kaehler resolutions, which gives a Bogomolov-Gieseker inequality over normal varieties and a characterization of the equality using projectively flat connections. We discuss typical cases including normal surfaces and varieties smooth in codimension two where we could simplify the Bogomolov-Gieseker inequality and endow it with topological meanings. We also prove the Bogomolov-Gieseker inequality for semistable reflexive sheaves and characterize the class of semistable sheaves that satisfy the Bogomolov-Gieseker equality. Finally, as another application, we give a new criteria for when a normal Kaehler variety with trivial first Chern class is a finite quotient of torus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源