论文标题
高斯贝塞尔电势和贝塞尔分数衍生物的界限
Boundedness of Gaussian Bessel Potentials and Bessel Fractional Derivatives on variable Gaussian Besov-Lipschitz spaces
论文作者
论文摘要
在本文中,我们研究了高斯贝塞尔电位的规律性特性和高斯贝塞尔分数衍生物在可变高斯besov-lipschitz空间上$ b_ { $ p(\ cdot)$和$ q(\ cdot)$。
In this paper we study the regularity properties of the Gaussian Bessel potentials and Gaussian Bessel fractional derivatives on variable Gaussian Besov-Lipschitz spaces $B_{p(\cdot),q(\cdot)}^α(γ_{d}),$ that were defined in a previous paper \cite{Pinrodurb}, under certain conditions on $p(\cdot)$ and $q(\cdot)$.