论文标题
所有质数都有原始的根源
All Prime Numbers Have Primitive Roots
论文作者
论文摘要
如果p是素数,则数字1、2,...,p-1在乘法模量下形成一个组。生成此组的数字G称为p的原始根。即,g的每个数字之间的每个数字都可以写成G Modulo p的力量。本文以ACL2社区的先前工作为基础,描述了一个建设性的证据,表明每个质子数具有原始的根源。
If p is a prime, then the numbers 1, 2, ..., p-1 form a group under multiplication modulo p. A number g that generates this group is called a primitive root of p; i.e., g is such that every number between 1 and p-1 can be written as a power of g modulo p. Building on prior work in the ACL2 community, this paper describes a constructive proof that every prime number has a primitive root.