论文标题

电力市场清算的机器学习

Machine Learning for Electricity Market Clearing

论文作者

Pagnier, Laurent, Ferrando, Robert, Dvorkin, Yury, Chertkov, Michael

论文摘要

本文旨在设计一个机器学习双胞胎的最佳功率流(OPF)优化,该双批量通过批发电力市场用于市场清除程序。提出的方法的动机源于获得数字双胞胎的需求,该数字双胞胎速度比原始双胞胎要快得多,同时也足够准确,并产生一致的发电派发和位置边际价格(LMP),它们分别是OPF优化的原始和双重解决方案。基于这种方法的市场清除工具的可用性将在给定的单位承诺下对多个调度方案进行计算处理。可以编写有关OPF问题的Karush-Kuhn-Tucker(KKT)条件,而不是对OPF的直接解决方案,可以编写有关OPF问题的条件,并且可以同时用OPF Lagrangian乘数来表示发电机和负载的LMP。此外,利用一个实际事实,即与线路相关的许多拉格朗日乘数将为零(热限制不是绑定),我们构建和训练ML方案,将ML计划映射到具有绑定线的灵活资源(负载和可再生能源),并用有效的功率感知的线性线性映射以最佳的派遣派遣和LMP来补充它。该方案在IEEE模型上进行了验证和说明。我们还报告了重建质量与培训模型所需的样本数量之间的分析交易。

This paper seeks to design a machine learning twin of the optimal power flow (OPF) optimization, which is used in market-clearing procedures by wholesale electricity markets. The motivation for the proposed approach stems from the need to obtain the digital twin, which is much faster than the original, while also being sufficiently accurate and producing consistent generation dispatches and locational marginal prices (LMPs), which are primal and dual solutions of the OPF optimization, respectively. Availability of market-clearing tools based on this approach will enable computationally tractable evaluation of multiple dispatch scenarios under a given unit commitment. Rather than direct solution of OPF, the Karush-Kuhn-Tucker (KKT) conditions for the OPF problem in question may be written, and in parallel the LMPs of generators and loads may be expressed in terms of the OPF Lagrangian multipliers. Also, taking advantage of the practical fact that many of the Lagrangian multipliers associated with lines will be zero (thermal limits are not binding), we build and train an ML scheme which maps flexible resources (loads and renewables) to the binding lines, and supplement it with an efficient power-grid aware linear map to optimal dispatch and LMPs. The scheme is validated and illustrated on IEEE models. We also report a trade of analysis between quality of the reconstruction and number of samples needed to train the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源