论文标题

弱无序的Weyl半度的电子传输

Electron transport in a weakly disordered Weyl semimetal

论文作者

Ismagambetov, M. E., Ostrovsky, P. M.

论文摘要

Weyl Semimetal是一种固体材料,在其Brillouin区域的传导和价带之间具有孤立的接触点 - Weyl点。这些点附近的低能量激发表现出线性分散体并充当相对论的无质量颗粒。在大多数扰动方面,Weyl点是稳定的拓扑对象。我们研究弱障碍对低能量极限Weyl半法的光谱和转运性能的影响。我们使用高斯白噪声电位的模型,并在三个维度附近应用维度正则化方案,以处理扰动理论中的发散术语。在自洽天生近似的框架内,我们发现了状态和电导率的平均密度的封闭表达式。这两个量都是零能量极限的分析功能。我们还包括超出自洽天生近似值的干扰术语,直到疾病力量的第三顺序。这些干扰校正比平均场结果和非分析作为能量功能都要强。我们的主要结果是电导率(单位$ e^2/h $)对电子浓度$σ=σ_0-0.891\,n^{1/3} + 0.115 \,(n^{2/3}/σ_0)\ ln | n | $。

Weyl semimetal is a solid material with isolated touching points between conduction and valence bands in its Brillouin zone -- Weyl points. Low energy excitations near these points exhibit a linear dispersion and act as relativistic massless particles. Weyl points are stable topological objects robust with respect to most perturbations. We study effects of weak disorder on the spectral and transport properties of Weyl semimetals in the limit of low energies. We use a model of Gaussian white-noise potential and apply dimensional regularization scheme near three dimensions to treat divergent terms in the perturbation theory. In the framework of self-consistent Born approximation, we find closed expressions for the average density of states and conductivity. Both quantities are analytic functions in the limit of zero energy. We also include interference terms beyond the self-consistent Born approximation up to the third order in the disorder strength. These interference corrections are stronger than the mean-field result and non-analytic as functions of energy. Our main result is the dependence of conductivity (in units $e^2/h$) on the electron concentration $σ= σ_0 - 0.891\, n^{1/3} + 0.115\, (n^{2/3}/σ_0) \ln|n|$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源