论文标题
阿贝尔域墙的分类
Classification of Abelian domain walls
论文作者
论文摘要
我们从自发破坏Abelian离散对称性$ z_n $中讨论域墙。预测一系列不同的域壁结构,具体取决于导致自发对称性破坏(SSB)的标量的对称和电荷分配。广泛存在的域壁类型是那些在田间空间中邻近的简并真空吸尘器分开的。我们将这些墙称为邻近墙。在与$ u(1)$项相比,$ z_n $项很小,$ u(1)$的SSB首先生成字符串,然后在$ z_n $的SSB之后生成字符串界的邻接墙。对于大于$ z_3 $的对称性,存在非贴身真空吸尘器,我们将其视为将其分开的墙壁。如果$ U(1)$是一个很好的近似值,这些墙将不稳定。如果离散的对称性通过多个步骤打破,我们得出了一种复杂的结构,一种由另一种类型包裹的墙壁。另一方面,如果对称性在不同的方向上折断,则由不同的断裂链产生的墙壁彼此视而不见。
We discuss domain walls from spontaneous breaking of Abelian discrete symmetries $Z_N$. A series of different domain wall structures are predicted, depending on the symmetry and charge assignments of scalars leading to the spontaneous symmetry breaking (SSB). A widely-existing type of domain walls are those separating degenerate vacua which are adjacent in the field space. We denote these walls as adjacency walls. In the case that $Z_N$ terms are small compared with the $U(1)$ terms, the SSB of $U(1)$ generates strings first and then adjacency walls bounded by strings are generated after the SSB of $Z_N$. For symmetries larger than $Z_3$, non-adjacent vacua exist, we regard walls separating them as non-adjacency walls. These walls are unstable if $U(1)$ is a good approximation. If the discrete symmetry is broken via multiple steps, we arrive at a complex structure that one kind of walls wrapped by another type. On the other hand, if the symmetry is broken in different directions independently, walls generated from the different breaking chains are blind to each other.