论文标题

RICCI曲率界限的空间的度量测量边界

The metric measure boundary of spaces with Ricci curvature bounded below

论文作者

Bruè, Elia, Mondino, Andrea, Semola, Daniele

论文摘要

我们通过表明公制测量边界在任何$ {\ rm rcd}(k,n)$空间上消失了,我们解决了由卡波维奇,莱特查克和彼得鲁宁提出的猜想。我们的结果与[Kapovitch-Lytchak-Petrunin '21]结合在一起,解决了一个公开的问题,即1996年,Perelman和Petrunin在Alexandrov空间上存在无限的大地测量空间。

We solve a conjecture raised by Kapovitch, Lytchak, and Petrunin by showing that the metric measure boundary is vanishing on any ${\rm RCD}(K,N)$ space without boundary. Our result, combined with [Kapovitch-Lytchak-Petrunin '21], settles an open question about the existence of infinite geodesics on Alexandrov spaces without boundary raised by Perelman and Petrunin in 1996.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源