论文标题

关于不断增长的第一音阶渗透球的孔的数量和大小

On the number and size of holes in the growing ball of first-passage percolation

论文作者

Damron, Michael, Gold, Julian, Lam, Wai-Kit, Shen, Xiao

论文摘要

首先使用i.i.d.在$ \ mathbb {z}^d $上定义的随机增长模型。边缘上的非负重$(τ_e)$。让$ t(x,y)$为重量引起的顶点$ x $和$ y $之间的距离,我们研究以原点为中心的半径$ t $的随机球,$ b(t)= \ {x \ in \ sathbb {z}^d:t(z}^d:t(0,x)众所周知,对于所有此类$τ_e$,$ b(t)$的顶点(体积)的数量至少为$ t^d $,在$τ_e$的轻度条件下,此卷的增长像确定性的常数时间$ t^d $。定义$ b(t)$的一个漏洞,成为补充$ b(t)^c $的有限组成部分,我们证明,如果$τ_e$不是确定性的,那么A.S.,对于所有$ t $,$ t $,$ b(t)$至少具有$ ct^{d-1} $的最大孔,并且至少是$ c \ c \ fog c \ fog c \ c。有条件地,在(未证实的)统一曲率假设上,我们证明,对于所有大$ t $,A.S.的孔数最多是$(\ log t)^c t^{d-1} $,对于$ d = 2 $,$ b(t)$中的$ d = 2 $的数量大于$(\ log log t)^c $。没有弯曲,我们表明没有孔的音量大于$ CT \ log t $。

First-passage percolation is a random growth model defined on $\mathbb{Z}^d$ using i.i.d. nonnegative weights $(τ_e)$ on the edges. Letting $T(x,y)$ be the distance between vertices $x$ and $y$ induced by the weights, we study the random ball of radius $t$ centered at the origin, $B(t) = \{x \in \mathbb{Z}^d : T(0,x) \leq t\}$. It is known that for all such $τ_e$, the number of vertices (volume) of $B(t)$ is at least order $t^d$, and under mild conditions on $τ_e$, this volume grows like a deterministic constant times $t^d$. Defining a hole in $B(t)$ to be a bounded component of the complement $B(t)^c$, we prove that if $τ_e$ is not deterministic, then a.s., for all large $t$, $B(t)$ has at least $ct^{d-1}$ many holes, and the maximal volume of any hole is at least $c\log t$. Conditionally on the (unproved) uniform curvature assumption, we prove that a.s., for all large $t$, the number of holes is at most $(\log t)^C t^{d-1}$, and for $d=2$, no hole in $B(t)$ has volume larger than $(\log t)^C$. Without curvature, we show that no hole has volume larger than $Ct \log t$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源