论文标题
$ n $ -polygon图的标准化拉普拉斯频谱及其应用
The normalized Laplacian spectrum of $n$-polygon graphs and its applications
论文作者
论文摘要
给定任意连接的$ g $,通过在图形$ g $的每个边缘添加长度$ n $ $(n \ geq 2)$获得的$ n $ -polygon图$τ_n(g)$,获得$ n $ g $的路径,以及迭代$ n $ n $ n $ -polygon $ -polygon $ them-polygon $τ_n^g(g)$ g(g) $τ_n^g(g)=τ_n(τ_n^{g-1}(g))$,初始条件$τ_n^0(g)= g $。在本文中,如果首先给出了图形$τ_n(g)$的归一化拉普拉斯矩阵的特征值的方法,则如果首先给出了图形$ g $的归一化laplacian矩阵的特征值。然后,也可以得出图形$τ_n(g)$的标准化拉普拉斯频谱和图形$τ_n^g(g)$($ g \ geq 0 $)。最后,作为应用程序,我们通过探索与归一化的laplacian Spect的连接来探索他们的连接,从而计算出图$τ_n(g)$的乘法kirchhoff索引,凯门尼的常数以及图$τ_n(g)$的跨越树的数量,并获得了这些量子的精确结果。
Given an arbitrary connected $G$, the $n$-polygon graph $τ_n(G)$ is obtained by adding a path with length $n$ $(n\geq 2)$ to each edge of graph $G$, and the iterated $n$-polygon graphs $τ_n^g(G)$ ($g\geq 0$), is obtained from the iteration $τ_n^g(G)=τ_n(τ_n^{g-1}(G))$, with initial condition $τ_n^0(G)=G$. In this paper, a method for calculating the eigenvalues of normalized Laplacian matrix for graph $τ_n(G)$ is presented if the eigenvalues of normalized Laplacian matrix for graph $G$ is given firstly. Then, the normalized Laplacian spectrums for the graph $τ_n(G)$ and the graphs $τ_n^g(G)$ ($g\geq 0$) can also be derived. Finally, as applications, we calculate the multiplicative degree-Kirchhoff index, Kemeny's constant and the number of spanning trees for the graph $τ_n(G)$ and the graphs $τ_n^g(G)$ by exploring their connections with the normalized Laplacian spectrum, exact results for these quantities are obtained.